Probability

Modeling uncertainty

Michael Psenka

Random experiment (random variable)

Elements of probability theory

Sample space

Definition. For a "random experiment", the sample space Ω is the set of possible outcomes of the random experiment.

Events

Definition. An event of a random variable with sample space Ω is a subset $E \subset \Omega$.

Distribution

Definition. A distribution $\pi : \mathcal{P}(\Omega) \to \mathbb{R}$ over a sample space Ω is a function of subsets of Ω that satisfies the following properties:

- 1. "Normalization": $\pi(\emptyset) = 0$, $\pi(\Omega) = 1$.
- 2. "Monotonicity": $A \subset B \Rightarrow \pi(A) \leq \pi(B)$.
- 3. "A dditivity": $A \cap B = \emptyset \Rightarrow \pi(A \cup B) = \pi(A) + \pi(B)$.

Measure-theoretic definition

1 Probability Spaces and Random Variables

Let $(\Omega, \mathcal{H}, \mathbb{P})$ be a probability space. The set Ω is called the *sample space*; its elements are called *outcomes*. The σ -algebra \mathcal{H} may be called the grand *history*; its elements are called *events*. We repeat the properties of the probability measure \mathbb{P} ; all sets here are events:

```
1.1 Norming: \mathbb{P}(\emptyset) = 0, \mathbb{P}(\Omega) = 1.
```

Monotonicity: $H \subset K \Rightarrow \mathbb{P}(H) \leq \mathbb{P}(K)$.

Finite additivity: $H \cap K = \emptyset \implies \mathbb{P}(H \cup K) = \mathbb{P}(H) + \mathbb{P}(K)$.

Countable additivity: (H_n) disjointed $\Rightarrow \mathbb{P}(\bigcup_n H_n) = \sum_n \mathbb{P}(H_n)$.

Sequential continuity: $H_n \nearrow H \implies \mathbb{P}(H_n) \nearrow \mathbb{P}(H)$,

 $H_n \searrow H \quad \Rightarrow \quad \mathbb{P}(H_n) \searrow \mathbb{P}(H).$

Boole's inequality: $\mathbb{P}(\bigcup_n H_n) \leq \sum_n \mathbb{P}(H_n)$.

Erhan Çinlar, Probability and Stochastics (you will not be tested on this)

Distribution (notes)

Definition. A distribution $\mathbb{P}: \mathcal{P}(\Omega) \to \mathbb{R}$ over a sample space Ω is a function of subsets of Ω , first defined over the singletons $\{a\}, a \in \Omega \text{ such that:}$

- 1. $\mathbb{P}(A) = \sum_{a \in A} \mathbb{P}(a)$,
- 2. $0 \leq \mathbb{P}(a) \leq 1$ for all $a \in \Omega$,
- 3. $\mathbb{P}(\Omega) = \sum_{a \in \Omega} \mathbb{P}(a) = 1$.

Equivalence of definitions

Equivalence of definitions

Random variables

Definition. A random variable is a double $X = (\Omega, \pi)$, where Ω is the sample space of X, and π is the distribution of X.

Examples of random variables

Example: balls and bins

Example: "birthday paradox"

Example: Monty Hall problem